Effects of elevated nitrogen and temperature on carbon and nitrogen dynamics in Alaskan arctic and boreal soils
نویسندگان
چکیده
[1] Plant productivity in upland tundra and boreal forest is demonstrably limited by nitrogen (N) and indirect evidence from field studies suggests that decomposition by soil microbes may be similarly limited. As climate warms at high latitudes, understanding the response of soil organic matter (SOM) decomposition to increased soil temperature may be crucial for determining the net effect of warming on ecosystem carbon (C) balance because temperature directly affects decomposition but also because it has an indirect effect on C balance via nutrient mineralization. We incubated northern Alaskan soils at two temperatures (5°C and 15°C) and two levels of N addition (with and without) to directly test for N limitation of SOM decomposition and to explore the interaction between temperature and N limitation. Over the entire 924 day incubation of organic and mineral soils from two ecosystem types, we measured microbial respiration; over the initial 90 days of the incubation, we measured microbial biomass N, net N mineralization, and the isotopic signatures (dC and DC) of microbial respiration. Across soil layers and ecosystem types, temperature always had a strong positive effect on SOM decomposition rates, whereas N addition had positive, negative, and neutral effects. When C respiration rates were high, the positive N response was generally most strongly expressed, for example, in the organic soils, in the warmer incubation, and at the outset of the experiment. Negative N responses often occurred when C respiration rates were lower, predominantly in mineral soils and at the middle or end of the experiment. In the subset of soil types where we measured the radiocarbon age of respired CO2, increased decomposition was related to increased use of older C. Net N mineralization and nitrification were not affected by temperature, but N addition increased net N immobilization in all soil layers and microbial biomass N in organic layers. Our data support the general idea that at least in these high‐latitude organic soils, decomposition of labile carbon can be positively stimulated by added N, whereas decomposition of recalcitrant C is suppressed.
منابع مشابه
Soil Nitrogen Transformations Associated with Small Patterned-Ground Features along a North American Arctic Transect
Small patterned-ground features (PGFs) in the Arctic have unique soil properties that vary with latitude and may greatly affect tundra biogeochemistry. Because nitrogen availability can strongly limit arctic vegetation growth, we examined how soil nitrogen transformations differ between PGFs and the surrounding inter-PGF tundra along an arctic latitudinal gradient. We collected soils at eight s...
متن کاملThe impact of atmospheric temperature and soil nitrogen on some physiological traits and dry matter accumulation of wheat (Triticum aestivum cv. Bahar)
Wheat is the most important cereal crop in the world as well as in Iran. The studies related to the effects of global climate change on wheat production usually assess the impact of changes in atmospheric CO2 concentration and temperature on growth and yield. On the other hand, nitrogen is the most crucial plant nutrient for crop production and the proper management and improving the utilizatio...
متن کاملEnzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors ...
متن کاملThe Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)
Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...
متن کاملTitle of Thesis: THE EFFECTS OF CO2 AND TEMPERATURE ON THE SOIL MICROBIAL CARBON AND NITROGEN OF URBAN AND RURAL FORESTS
Title of Thesis: THE EFFECTS OF CO2 AND TEMPERATURE ON THE SOIL MICROBIAL CARBON AND NITROGEN OF URBAN AND RURAL FORESTS Elizabeth Kulka, Master of Science, 2015 Thesis Directed By: Professor Marla S. McIntosh Department of Plant Science This study investigated and compared the effects of elevated temperature and elevated CO2 on the microbial biomass carbon (MBC) and nitrogen (MBN) of urban and...
متن کامل